基本概念:
1、多维数据集:多维数据集是联机分析处理 (OLAP) 中的主要对象,是一项可对数据仓库中的数据进行快速访问的技术。多维数据集是一个数据集合,通常从数据仓库的子集构造,并组织和汇总成一个由一组维度和度量值定义的多维结构。
3、度量值:在多维数据集中,度量值是一组值,这些值基于多维数据集的事实数据表中的一列,而且通常为数字。此外,度量值是所分析的多维数据集的中心值。即,度量值是最终用户浏览多维数据集时重点查看的数字数据。您所选择的度量值取决于最终用户所请求的信息类型。一些常见的度量值有 sales、cost、expenditures 和 production count 等。
5、级别:级别是维度层次结构的一个元素。级别描述了数据的层次结构,从数据的最高(汇总程度最大)级别直到最低(最详细)级别。
9、混合 OLAP (HOLAP):HOLAP 存储模式结合了 MOLAP 和 ROLAP 二者的特性。
10、粒度:数据汇总的层次或深度。
11、聚合|聚集:聚合是预先计算好的数据汇总,由于在问题提出之前已经准备了答案,聚合可以改进查询响应时间。
12、切块:由多个维的多个成员限定的分区数据,称为一个切块。
13、切片:由一个维的一个成员限定的分区数据,称为一个切片。
实例构建过程与分析
1、现在以一个比较简单的实例来分析和探讨MS SQL Server 数据仓库的构建过程。实际上数据仓的构建是相当复杂的,他结合了数据仓库的前端技术和很强的业务要求。在这儿只是以一个简单的实例来说明他大致的构建流程。